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Abstract. We employ recent results about constraint nondegeneracy in variational conditions to
design and justify a linearization algorithm for solving such problems. The algorithm solves a se-
quence of affine variational inequalities, but the variational condition itself need not be a variational
inequality: that is, its underlying set need not be convex. However, that set must be given by systems
of differentiable nonlinear equations with additional polyhedral constraints. We show that if the
variational condition has a solution satisfying nondegeneracy and a standard regularity condition,
and if the linearization algorithm is started sufficiently close to that solution, the algorithm will
produce a well defined sequence that converges Q-superlinearly to the solution.
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1. Introduction

This paper develops a linearization method for solving certain variational condi-
tions involving differentiable functions. Here we use the term variational condition
in the sense of [10, Example 6.13], to mean an inclusion of the form

0∈f �x�+NS�x�� (1.1)

where S is a subset of �n defined by

S=
x∈P∩X0 �h�x�∈Q�� (1.2)

where P and Q are polyhedral convex sets in �n and �m respectively and f is a
function from an open subset X0 of �

n to �n. The set NS�x� is the normal cone of
S at x; it is empty if x�S. We use the symbols TA�z� and NA�z� to denote tangent
and normal cones to a set A at a point z∈A in the sense of [10, Sections 6.A, 6.B].
If the sets involved are convex, these tangent and normal cones coincide with the
ones used in convex analysis [9].
The key requirement we impose here is that (1.1) should satisfy the condition

of constraint nondegeneracy studied in [8]. In that paper we identified a num-
ber of stability and sensitivity properties of variational conditions satisfying the
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constraint-nondegeneracy requirement. Here we illustrate an application of that
general theory by showing how to use it to prove local Q-superlinear convergence
of a linearization method for solving (1.1). We focus on the way in which applica-
tion of the theory promotes conceptual simplicity of the arguments, rather than on
obtaining the maximum possible generality.
The rest of this paper is organized in four sections. The next, Section 2, reviews

enough of the material from [8] to provide the tools and notation that we will need.
We then explain the linearizationmethod in Section 3, and establish its convergence
in Section 4. Finally, in Section 5 we illustrate the application of the method to a
small example, and comment on issues that could benefit from additional research.

2. Review of nondegeneracy

This section reviews some of the material from [8] that we will need to use in
the statement and analysis of the computational method. In defining and analyzing
our method we will need to employ a variational inequality whose underlying set
changes at each iteration, so we first examine some properties of the representation
of such a set.
The framework of [8] included the introduction of perturbations into S to pro-

duce a set S�u� depending on a parameter u in a Banach space U , with a point u0
representing the unperturbed problem. The precise dependence of S�u� on u was
expressed by the definition

S�u�=
x∈P∩X0 �h�x�u�∈Q�=P∩h�·�u�−1�Q�� (2.3)

where P and Q were as described in Section 1. The function h was assumed to be
Ck (k�1) from a product of open neighborhoods X0 and U0 of points x0∈�n and
u0∈U respectively, to �m. It is thus possible to write the set S�u� as the solution
set of a system of finitely many (generally nonlinear) inequalities or equations,
though expressing it explicitly in such a form may require additional rewriting and
may in some cases be cumbersome.
We then carried the perturbations into the variational condition by letting f be

a function from X0×U0 to�n and considering the inclusion
0∈f �x�u�+NS�u��x�� (2.4)

Accordingly, in this setup both the function and the set appearing in the variational
condition (2.4) depend on the parameter u.
Second, we required the representation (2.3) to satisfy a certain property called

(constraint) nondegeneracy that led to very favorable behavior under perturbations.
If we represent partial derivatives in x and in u on X0×U0 by the commonly
used symbols hx�x�u� and hu�x�u�, then we say that the representation (2.3) is
nondegenerate at x0 for u=u0 if

hx�x0�u0��linTP�x0��−linTQ�h�x0�u0��=�m� (2.5)
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and degenerate there otherwise. Here the symbol linC denotes the lineality space
of a convex set C, defined to be the set of points v such that C+v=C.
This nondegeneracy condition uses only information about the derivative of h at

the point �x0�u0�, so that (except for the underlying differentiability requirement)
we do not need any information about perturbed versions h�·�u� of h. In fact, given
the underlying sets P and Q, to determine whether nondegeneracy holds we need
only know the point x0, the function value y0=h�x0�u0�, and the partial derivative
hx�x0�u0�. Thus, nondegeneracy is a property defined by the linearized constraint
system. The original introduction of nondegeneracy (without the requirement of
polyhedrality) was in [7]. More recently, Bonnans and Shapiro have considered
another approach in [1, Section 4.6.1]. They noted in [1, Remark 4.72] that for the
present case the two definitions both reduce to the requirement above.
Nondegeneracy is sometimes used to describe a different property of variational

inequalities, which has nothing to do with the way we use the term here. Specific-
ally, some authors describe a solution c0 of a variational inequality specified by a
function f and a polyhedral convex set C as nondegenerate if it lies in the relative
interior of the critical face of C (that is, the face 
c∈C � 
f �c0��c−c0�=0�): see,
e.g., [2, Definition 3.4.1]. That definition involves the position of f �c0�with respect
toC, whereas the concept with which we deal here involves only the representation
of the underlying set.
In [8] we showed how to combine nondegeneracy with a known regularity prop-

erty that has been shown to imply good behavior for variational inequalities. In the
next section we will need this combination, so we give the relevant theorem here.
It is a combination of Theorems 3.1 and 5.3 of [8].

THEOREM 2.1. Let P andQ be polyhedral convex subsets of�n and�m respect-
ively. Let U be a Banach space, u0 a point of U , and U0 an open subset of U
containing u0. Let X0 be an open subset of �n and x0 a point in P∩X0, and let h
be a C2 function from X0×U0 to �m. Let y0=h�x0�u0� and assume that y0∈Q.

For u∈U0 define S�u� by (2.3), and assume that the representation (2.3) is
nondegenerate at �x0�y0� for u=u0. Let f be a C1 function from X0×U0 to �n,
and suppose that �x0�u0� solves (2.4). Let Z be the kernel in �m+n of the linear
transformation G= �hx�x0�u0� −I�, let M be an m-dimensional subspace of
linTP�x0�×linTQ�y0� whose image underG is�m, and letG− be the unique linear
generalized inverse of G with respect to the direct-sum decomposition �n+m=
Z⊕M . Let N be the linear operator from �n+m to �n defined by N�x�y�=x.

Define a linear transformation L"�n→�n by

L�z�=dxf �x0�u0��z�−f �x0�u0�NG−hxx�x0�u0��z�� (2.6)

and polyhedral convex cones T and K in �n by

T =
z∈TP�x0� �hx�x0�u0�z∈TQ�y0���
K=
z∈T � 
f �x0�u0��z�=0��
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If the normal map LK is a homeomorphism, then there is a positive %0 such that
for each %>%0 there are neighborhoods X ′′ of x0 and U ′′ of u0, and a function
x "U ′′→�n that is Lipschitzian with modulus %, such that x�u0�=x0 and such
that for each u∈U ′′ x�u� is the unique point in X ′′ satisfying (2.4). Further, the
function x is B-differentiable at u0 with

dx�u0��wu�=(K ��LK�−1��−dup�u0��wu��−NG−hu�x0�u0��wu��

(2.7)

where dup�u0��wu� is given by


dup�u0��wu��z� = 
fx�x0�u0��−NG−hu�x0�u0��wu��+fu�x0�u0��wu��z�
+ 
f �x0�u0��−NG−hxx�x0�u0��−NG−hu�x0�u0��wu���z�

− NG−hux�x0�u0��wu��z��� (2.8)

This section has presented some foundational material, taken from [8], about the
analysis of variational conditions satisfying certain conditions for good behavior.
In the next section we build on that foundation to develop and justify a linearization
method for solving (1.1).

3. The linearization method

This section suggests a way of constructing a linearization method for numerical
solution of (1.1), and comments on some issues that arise in the construction.
The next section establishes conditions under which that method will converge at
least Q-superlinearly in a neighborhood of a solution x∗ of (1.1) at which certain
conditions hold, including the constraint nondegeneracy condition described in
Section 2.
To motivate the method, we observe first that the normal-map analysis in The-

orem 2.1 is directed at a certain affine variational inequality, namely

d∈L�z�+NK�z��
whose solutions give substantial amounts of information about the nonlinear prob-
lem. Such affine approximations have been studied before, e.g., by Bonnans and
Shapiro [1, Eq. (5.29)] and [11, Eqs. (4.6), (4.7)]. In these cases the affine problem
appears with multipliers as explicit variables. Facchinei and Pang [2, Chapter 5]
also employ a similar idea.
However, if we do not yet know the solution of the variational condition we are

analyzing, then we will not be able to identify the critical cone K. Therefore we
might think of taking the kind of approach employed in nonlinear programming
by [12, 5], and in a series of works by Pshenichnyj and co-authors, summarized in
[4]. The basic idea in all of these was to linearize the set on which one works and
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then to compensate for the linearization by introducing into the objective function
a term (usually quadratic) incorporating information about the curvature of the
boundary of that set near the point of interest. One then solves the subproblem thus
generated, and uses the information produced by that solution to generate the next
subproblem.
To implement this idea in our situation we can look to the linear operator L

given in Theorem 2.1 for guidance in choosing the quadratic compensation term.
Let us start by defining a generic variable z=�x�q�∈�n×�m. We will use
various additional symbols to distinguish specific points, for example z′ =�x′�q ′�.
Now assume for the moment that x∗ is a solution of (1.1) that satisfies the condi-
tions of Theorem 2.1, and that f and h have enough differentiability near x∗; we
shall be precise in the next section. Let q∗ "=−f �x∗�NG−�x∗�, where G

− and N
are as defined in Theorem 2.1, and write z∗=�x∗�q∗�.
Given a point z′ =�x′�q ′�, we define a variational inequality VI(z′) by

0∈F�x�z′�+NS�z′��x�� (3.9)

where

F�x�z′�=f �x′�+fx�x′��x−x′�+q ′hxx�x′��x−x′�� (3.10)

and

S�z′�=
x∈P �H�x�z′�∈Q�� (3.11)

with H�x�z′�=h�x′�+hx�x′��x−x′�. Note that VI(z′) is an affine variational
inequality defined over a polyhedral convex set. By solving (3.9) (if that can be
done) we obtain a new point x and, via the expression of −F�x�z′� as an element
of the normal cone

NS�z′��x�=
qhx�x′�+p �p∈NP�x�� q∈NQ�h�x′�+hx�x′��x−x′���� (3.12)

we obtain a new set of multipliers q, which we shall show to be unique. Now we
have a new point z=�x�q� and we repeat the process using z in place of z′.
Since this process uses the multipliers q, one might ask two questions at this

point. First, as we shall see below, there is an explicit formula for the multipliers
in terms of the associated point x forming the rest of the pair z=�x�q�. Thus we
may ask why q has to appear at all: perhaps we could write the procedure in terms
of x alone. The answer is that the explicit formula uses the subspaceM appearing
in Theorem 2.1, and this subspace is unknown until we determine the solution x∗.
Therefore during the computation we actually have to obtain q from normal-cone
information generated at each step.
The second question naturally follows from this; it is why, if we really need

multipliers, we do not just write out (1.1) in extended form, with variables and
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multipliers, as a variational inequality over a polyhedral convex set, and apply
known methods to it. The answer to that question is that the extended form requires
the identity NQ=N−1

Q� , which in turn requires Q to be a cone (whose polar is Q�).
In our formulation we have not made this restriction, so the extended form is not
available to us.
Of course, in order to have any confidence in the solution procedure we have

outlined, one would have to know that the subproblems it generates had solutions,
preferably at least locally unique, and that the sequence of points 
zk�, obtained
from repetitive applications of this idea starting with some given z0, converged to
�x∗�q∗�. For efficient numerical solution one would also want to know that the rate
of convergence was at least Q-superlinear; see [3].
We show in the next section that under the conditions of Theorem 2.1 these

properties will hold, and moreover that their establishment is conceptually fairly
direct and simple once we apply the analytical tools given by that theorem to the
auxiliary variational inequality (3.9) that we constructed above.

4. Convergence analysis

This section establishes Q-superlinear convergence of the repeated linearization
algorithm described in Section 3. The proof takes three steps. First we show that
under suitable regularity conditions, for z′ close enough to z∗=�x∗�q∗� the sub-
problem (3.9) has a locally unique solution x�z′� that is Lipschitzian and that,
moreover, x�z′� has a B-derivative at z′ =z∗ that is zero (hence actually a Fréchet
derivative). Then we show that if we define the associated multiplier q�z′� by the
formula established in [8], the function q�z′� also has a zero F-derivative at z′ =z∗.
Combining these two results we conclude that the function z�z′�=�x�z′��q�z′��
has a zero F-derivative at z′ =z∗, and we use that fact to prove the convergence
theorem.
Here is the first of the three steps.

THEOREM 4.1. Assume that (1.1) satisfies the conditions of Theorem 2.1 at a
solution x∗, and that the functions f and h are respectively C2 and C3 near x∗. Let
q∗=q�x∗� and z∗=�x∗�q∗�.

Then there is a positive %0 such that for each %>%0 there are neighborhoods
X∗ of x∗ and Z∗ of z∗, and a function x "Z∗→�n that is Lipschitzian with
modulus %, such that x�z∗�=x∗ and such that for each z′ ∈Z∗, x�z

′� is the unique
point in X∗ satisfying the variational inequality VI(z′) given by (3.9). Moreover,
the function x is F-differentiable at z∗ with dx�z∗�=0.

Proof. We first show that x∗ solves VI(z∗). The fact that x∗ satisfies (1.1) implies
that x∗ ∈S, so x∗ ∈P and h�x∗�∈Q. It follows from the definition of S�z� that
then x∗ ∈S�z∗�. We have F�x∗�z∗�=f �x∗�, and by using 3.12 we obtain

NS�z∗��x∗�=
q∗hx�x∗�+p∗ �p∗ ∈NP�x∗�� q∗ ∈NQ�h�x∗���=NS�x∗��
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so that

0∈f �x∗�+NS�x∗�=F�x∗�z∗�+NS�z∗��x∗��
Therefore x∗ solves VI(z∗).
For local uniqueness, we apply [8, Theorem 5.3] to the perturbed variational

inequality (3.9), taking the base value of the perturbation z′ to be z∗. The non-
degeneracy condition on the representation (3.11) of S�z� at the point �x∗�z∗� is
that

hx�x∗��linTP�x∗��−linTQ�h�x∗��=�m�

which is the same as the nondegeneracy condition on S at x∗ that is part of the
hypothesis. We also have to verify a regularity condition on (3.9) at z∗. To do so,
define a linear transformation L�w� by

L�w�=Fx�x∗�z∗��w�−F�x∗�z∗�NG−Hxx�x∗�z∗��w�
=fx�x∗��w�−f �x∗�NG−hxx�x∗��w��

(4.13)

Noting that q∗=−f �x∗�NG− by [8, Theorem 5.6], we see that

L�w�=fx�x∗��w�+q∗hxx�x∗��w��
The cones T and K involved in the statement of [8, Theorem 5.3] for (3.9) are

T =
w∈TP�x∗� �hx�x∗�w∈TQ�h�x∗���
and its critical cone at �0�−f �x∗��, namely

K=
w∈T � 
−f �x∗��w�=0��

But these quantities L, T , and K are the same as the corresponding quantities
for the regularity condition applicable to (1.1) at x∗, and we have assumed the
homeomorphism property for them. Therefore [8, Theorem 5.3] tells us that there
is a positive %0 such that for each %>%0 there are neighborhoods X∗ of x∗ and
Z∗ of z∗ and a function x "Z∗→�n that is Lipschitzian with modulus %, such that
x�z∗�=x∗ and such that for each z′ ∈Z∗, x�z

′� is the unique point in X∗ satisfying
(3.9). Moreover, the function x is B-differentiable at z∗ with

dx�z∗��wz�=(K ��LK�−1��−p�x∗�z∗��wz��−NG−Hz�x∗�z∗��wz��

(4.14)

where p�x∗�z∗��wz� is defined by


p�x∗�z∗��wz��v� = 
Fx�x∗�z∗��−NG−Hz�x∗�z∗��wz��+Fz�x∗�z∗��wz��v�
+ 
F�x∗�z∗��−NG−Hxx�x∗�z∗��−NG−Hz�x∗�z∗��wz���v�

− NG−Hzx�x∗�z∗��wz��v���
(4.15)
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We will show that this B-derivative is zero (hence is an F-derivative), and
to do so it will be convenient to begin by considering the quantity Hz�x∗�z∗�.
As H�x�z′�=h�x′�+hx�x′��x−x′�, where as before z′ =�x′�q ′�, we find that
(using wz as a placeholder for the argument on which the derivative operates)

Hz�x�z
′��wz� = hx�x′��wx′�+hxx�x′��wx′��x−x′�−hx�x′��wx′�

= hxx�x′��wx′��x−x′�� (4.16)

as there is no component in q. Accordingly Hz�x∗�z∗�=0, so the last term in
(4.14) will vanish. However, this quantity also appears in two places in (4.15), so
we can simplify what is given there to the form


p�x∗�z∗��wz��v�=
Fz�x∗�z∗��wz��v�
+
F�x∗�z∗��−NG−Hzx�x∗�z∗��wz��v��� (4.17)

From (3.10) we have

F�x�z′�=f �x′�+fx�x′��x−x′�+q ′hxx�x′��x−x′��
so that

Fz�x�z
′��wz� = fxx�x′��wx′��x−x′�+q ′hxxx�x′��wx′��x−x′�

−q ′hxx�x′��wx′�+�wq′�hxx�x′��x−x′��
and therefore


Fz�x∗�z∗��wz��v�=−q∗hxx�x∗��wx′��v�� (4.18)

Returning to (4.17), we take the other remaining term and evaluate


F�x∗�z∗��−NG−Hzx�x∗�z∗��wz��v���
We already found in (4.16) that Hz�x�z

′��wz�=hxx�x′��wx′��x−x′�, so we have
Hzx�x∗�z∗��wz�=hxx�x∗��wx′�. Then


F�x∗�z∗��−NG−Hzx�x∗�z∗��wz��v��=−F�x∗�z∗�NG−hxx�x∗��wx′��v�

=q∗hxx�x∗��wx′��v�� (4.19)

Comparing (4.18) and (4.19), we find that the two quantities differ only in sign.
Accordingly, when added together in (4.17) they cancel, and therefore we have
shown that dx�z∗�=0. �

Theorem 4.1 carries out the first step of the convergence analysis by showing
that, as a function of the variable z, the solution x of (3.9) is F-differentiable at z∗
with F-derivative zero. But x is only part of the problem; at each step we will allow
the problem to determine a new value of the multiplier q, and then use the resulting
pair z=�x�q� to set up the next problem. The next theorem provides the second
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step of the analysis by showing that q is F-differentiable as a function of z, with
dq�z∗�=0.
To set the stage for the theorem, we recall that [8, Theorem 5.6] showed that

under the nondegeneracy condition, (2.4) holds at a point �x�u� near �x∗�u∗� in
the equivalent extended (multiplier) form

0=f �x�u�+qhx�x�u�+p� p∈NP�x�� q∈NQ�h�x�u���
(4.20)

if and only if

p=−f �x�u��I−NG�x�u�−hx�x�u��� q=−f �x�u�NG�x�u�−�
(4.21)

and

p∈NP�x�� q∈NQ�h�x�u���
Accordingly, we have an explicit formula for the (necessarily unique) multiplier q,
and we will exploit this fact in our analysis.
There is a somewhat subtle point here: as we pointed out above, the formula

for the multiplier depends on the subspace M , which is unknown until we know
x∗. Thus, we cannot use this formula directly in computation. This is why we will
find successive estimates of the multiplier from the solutions to the intermediate
subproblems in our algorithm. However, we are assuming that a nondegenerate
solution exists (even though we do not yet know it), so it is perfectly acceptable to
use the form of the multiplier in analytical work.

THEOREM 4.2. Assume the hypotheses of Theorem 4.1. For z′ =�x′�q ′� near z∗
let x�z′� be a solution of VI(z′) as given in (3.9) and let q�z′� be the associated
multiplier. Then the function q�z′� is F-differentiable at z∗ with dq�z∗�=0.

Proof. As we already know that the point x comprising the other component of the
solution is a function x�z′�, we see from the comments preceding this theorem that
the multiplier has the form

q�z′�=−F�x�z′��z′�NG�x�z′��z′�−� (4.22)

The matrixG�x�z′��z′�− is given by the formula

G�x�z′�−=B�G�x�z′�B�−1� (4.23)

where B is an �n+m�×m matrix whose columns are a basis for the subspace M
and where

G�x�z′�=[
Hx�x�z

′� −I]�
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As x appears as an intermediate variable in (4.22), we can use the chain rule to
express the F-derivative of q at z∗ as

dq�z∗�=qx�x�z∗��z∗�dx�z∗�+qz�x�z∗��z∗��
Under our hypotheses we have already shown that dx�z∗�=0, so the first term
will be zero at z=z∗. We also know that x�z∗�=x∗. Thus we need only find the
partial derivative of q with respect to z, and then evaluate it at the pair �x∗�z∗�.
Using (4.22) and (4.23), we find that

qz�x�z
′��wz� = −Fz�x�z′��wz�NB�G�x�z′�B�−1

− F�x�z′�NB�G�x�z′�B�−1�−Gz�x�z′��wz�B��G�x�z′�B�−1�
(4.24)

We showed in (4.18) above that Fz�x∗�z∗��wz�=−q∗hxx�x∗��wx�, so the value of
the first term in (4.24) at x=x∗ and z=z∗ will be

q∗hxx�x∗��wx�NG�x∗�z∗�
−� (4.25)

Now use the formulas in (4.22) and (4.23) to rewrite the second term as

q�z′��−Gz�x�z′��wz�B��G�x�z′�B�−1�
We have for any z′ the formula

G�x�z′�=[
Hx�x�z

′� −I]=[
hx�x

′� −I]�
so that

Gz�x�z
′��wz�=

[
hxx�x

′��wx� 0
]=hxx�x′��wx�N �

Using this in the expression for the second term we obtain

q�z′��−hxx�x′��wx�NB��G�x�z′�B�−1=−q�z′�hxx�x′��wx�NG�x�z′�−�
so that at x=x∗ and z=z∗ the value of the second term will be

−q∗hxx�x∗��wx�NG�x∗�z∗�−� (4.26)

Putting (4.25) and (4.26) into (4.24), we obtain qz�x∗�q∗�=0, and in light of our
earlier comment this also shows that dq�z∗�=0. �

The analysis of our linearization algorithm is now fairly simple, provided that
we adopt the viewpoint that we proposed in [6]. That viewpoint consists in regard-
ing the execution of the linearization algorithm as a simple iteration on the implicit
function x�z� identified in Theorem 4.1. The properties of that function, especially
the zero B-derivatives at the point z∗, then yield the required properties for the
sequence xk of approximate solutions.
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More formally, let a point z0=�x0�q0�∈�n+m be given. For n�0 let xn+1
solve the affine variational inequality

0∈F�y�zn�+NS�zn��y�� (4.27)

where F�y�zn� and S�zn� are defined by (3.10) and (3.11). Let qn+1 be the multi-
pliers q obtained from the expression

NS�zn��xn+1�=
qhx�xn�+p �p∈NP�xn+1��
q∈NQ�h�xn�+hx�xn��xn+1−xn���� (4.28)

and define zn+1 to be �xn+1�qn+1�. The following theorem shows that if the problem
has the regularity properties that we have discussed above, and if we choose z0
close enough to z∗, then this procedure is well defined and in fact yields a sequence

zn� that converges Q-superlinearly to z∗.

THEOREM 4.3. Assume the notation and hypotheses of Theorem 4.1. There is then
a neighborhood Z′ of z∗ such that for any choice of z0 in Z′ the sequence 
zn� is
uniquely defined, remains in Z′, and converges Q-superlinearly to z∗.

Proof. We start with the neighborhoods Z∗ and X∗ produced by Theorem 4.1, and
recall that if z′ ∈Z∗ then x�z

′� is the unique solution in X∗ of (3.9) for this choice
of z′. Moreover, we find from [8, Theorem 5.6]smr:cnv that for some neighbor-
hoods X0 of x∗ and Z0 of Z∗, if x∈X0 and z′ ∈Z0 with x a solution of (3.9) for
the parameter z′, then the multipliers q in (4.28) are not only unique, but are given
by the differentiable functions q�z′� in (4.22). Finally, as we have shown the B-
derivatives dx�z′� and dq�z′� at z′ =z∗ to be zero, for any positive . we can find a
neighborhood Z. of z∗ such that if z∈Z. then

�x�z′�−x∗��.�z′−z∗�� �q�z′�−q∗��.�z′−z∗�� (4.29)

where we use the Euclidean norm.
Now choose a positive / such that the closed ball B�z∗�/� about z∗ satisfies

B�z∗�/�⊂Z∗∩Z0∩x−1�X0�∩Z.0�
where .0=2−3/2. Consider any n for which zn∈B�z∗�/�. Then the point xn+1
is well defined since zn∈Z∗, xn+1 belongs to X0 because zn∈x−1�X0�, and
qn+1 is well defined because zn∈Z0 and xn+1∈X0. Therefore the point zn+1=
�xn+1�qn+1� is well defined. Moreover, as zn∈Z.0 we have

�zn+1−z∗�2 = �xn+1−x∗�2+�qn+1−q∗�2
� �2−3/2�zn−z∗��2+�2−3/2�zn−z∗��2
= 2−2�zn−z∗�2� (4.30)
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so that

�zn+1−z∗���1/2��zn−z∗�� (4.31)

If we take z0 to be in B�z∗�/�, then by the above argument z1 is well defined
with �z1−z∗���1/2��z0−z∗�, so that z1∈B�z∗�2−1/�. Continuing this argu-
ment, we see that the entire sequence 
zn� is well defined with zn∈B�z∗�2−n/�,
so that the zn must converge to z∗. However, for any positive . there is an N. such
that for n�N. the points zn all belong to Z.. Accordingly, for n�N. we have

�zn+1−z∗��.�zn−z∗��
which implies Q-superlinear convergence. �

We have therefore established that under the appropriate regularity assumptions
this linearization method is locallyQ-superlinearly convergent. In the final section
we give a very small example to illustrate the application of this method, and we
make some comments about possible extensions of the results given here.

5. Example

This section gives a very small and simple example to illustrate application of
the method, and it adds some comments about possibly sharper or more complete
results.
For the trivial example in �2 given by

0∈x+a+NS�x��
with a=�−5�0� and

S=
�x1�x2� �x1−0�5x22�0��
the algorithm gave the sequence of points shown in Table I; the initial estim-
ates are shown with n=0. Computations were done to single precision in a
spreadsheet. The table clearly shows the superlinear convergence to the solution
x∗=�0�0�, q∗=5.
As observed in Section 1, the focus in this paper has been on the way in which

we can use the general analytical tools of [8] to gain conceptual simplicity in
analyzing a solution procedure. Several aspects of this procedure remain to be
investigated; these include its numerical behavior for problems of realistic size,
the choice of numerical methods for solution of the subproblems, and the use of
higher-order expansions to sharpen the convergence analysis, as well as how one
might adapt it to situations in which constraint nondegeneracy does not hold. We
hope to report on some of these areas in the future.
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Table I. Solution of problem in �2

n �xn�1 �xn�2 qn

0 1.00E-1 1.00E-1 1.00E+1
1 5.56E-4 5.56E-2 5.00E+0
2 -1.55E-3 -2.94E-5 5.00E+0
3 -4.33E-10 -1.14E-8 5.00E+0
4 -4.33E-10 -1.14E-8 5.00E+0
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